Abstract

This paper reports two experimental studies wherein the combustion process of flame resistant (FR) thermal protective textiles is characterized in terms of thermal decomposition and heat release parameters before and after contamination and in terms of heat release parameters after contamination and decontamination. Aramid and FR cotton/nylon decomposed at higher and aramid/FR viscose at lower temperature in the presence of oil. Oil interferes with thermally induced interactions between aramid and FR viscose, altering the thermal decomposition rates and formation of char, and thereby increasing the effectiveness of the flame retardant present in the viscose. It is apparent that oily contaminants present in FR fabrics affect the initiation of the thermal degradation and formation of char. All contaminated FR fabrics showed significantly higher peak heat release rate (PHRR), total heat release (THR) and effective heat of combustion (EHC) compared to uncontaminated ones. Oily specimens laundered with no detergent or prewash product had higher PHRR, THR and EHC compared to other treatments regardless of the fabric type or number of contamination/decontamination cycles. Heat release increased with increased number of contamination/decontamination cycles for most laundry treatments for all FR fabrics. FR cotton/nylon had the highest and aramid had the lowest PHRR and THR whether specimens were uncontaminated, contaminated or decontaminated. In this study heat release from FR fabrics increased with increased oily contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call