Abstract

The dynamic features of an agglomerate bubbling fluidization of nanoparticles were investigated through the analysis of pressure fluctuations. Experiments were carried out in a lab-scale fluidized bed at ambient conditions using 10–15nm silica nanoparticles without any surface modification. Pressure fluctuation signals were processed in both frequency and time-frequency domains to characterize the behavior of various scales of phenomena (i.e., macro-, meso-, and micro-structures) during fluidization. Due to the aggregation of nanoparticles, three separate broad peaks were observed in the frequency spectra of the pressure signals measured in the bubbling fluidized bed of nanoparticles. A non-intrusive method based on the decoupling of pressure fluctuations recorded simultaneously in the plenum and in the bed was used to determine the approximate size of the bubbles in the bed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.