Abstract

The wind tunnel facility at the Centro de Tecnologías Aeronáuticas was used to perform a set of experiments to study the effect of intentional mistuning on the forced response behavior of an aerodynamically unstable low-pressure turbine rotor. The intentional mistuning patterns were implemented by adding a small extra mass to some of the blades. The forced response of the rotor was therefore expected to show two resonance peaks with similar amplitudes, corresponding, respectively, to the vibration frequencies of the blades with and without added mass. However, on the post-processing of the measurements, some anomalous behavior was observed. Near resonance, the system response was synchronous with the forcing, and the frequency sweeps exhibited two resonance peaks, but it was found that the two peaks were clearly different, with the peak at lower frequency showing a much higher vibration amplitude than the high-frequency peak, and with some blades responding at both frequencies with a similar amplitude. In order to give a correct interpretation of the experimental results, a reduced-order model is derived that takes into account only the traveling wave modes coupled by the mistuning. This model, although extremely simple, is capable of reproducing the unexpected behavior of the experiments, and gives a clean explanation of the system response. It is shown that the relative size of the mistuning with respect to the frequency difference of the involved traveling-wave modes is the key parameter for the appearance of this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call