Abstract
Based on the requirements of the narrow installation space of a train end, compact energy-absorbing travel, and huge energy suck, a shrink tube anti-creep device was designed. The crashworthiness of different structures was studied by means of a material test, a trolley test, and numerical simulation. For every 1 mm increase in tube wall thickness, 1 mm increase in the axial length of the friction cone, and 0.01 increase in the friction coefficient, the mean crushing force (MCF) increased by 45.1 kN, 13.5 kN, and 30.5 kN, respectively. When the cone angle of the shrink tube increased from α = 5° to α = 25°, the increase in the MCF with different thicknesses was about 600%. The MCF was most affected by the cone angle, followed by the wall thickness, the friction coefficient, and the axial length of the friction cone. The change in the contact length of the friction cone of the shrink tube under different structural parameters was compared. The contact length decreased with the increase in tube wall thickness and increased with the increase in angle. The variation rule of MCF was obtained to provide a reference for the development of genealogical products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.