Abstract
In Duchenne muscular dystrophy (DMD), angiogenesis appears to be attenuated. Local administration of angiopoietin 1 (Ang1) has been shown to reduce inflammation, ischemia, and fibrosis in DMD mice. Ang1 is a vital vascular stabilizing factor that activates the endothelial cell receptor Tie2, leading to downstream pro-survival PI3K/Akt pathway activation and eNOS phosphorylation. In this study, we aimed to characterize the Ang/Tie2 signaling pathway within the diaphragm muscle of mouse models of DMD. Utilizing ELISA, immunoblots, and RT-qPCR, we demonstrated that Ang1 was downregulated, while the antagonist angiopoietin 2 (Ang2) was upregulated, leading to a decreased Ang1/Ang2 ratio. This correlated with a reduction in the phosphorylated Tie2/total Tie2 ratio. Interestingly, no significant differences in Akt or eNOS phosphorylation were observed, although DMD murine models did have elevated total Akt protein concentrations. These observations suggest that Ang1/Tie2 signaling may be dysregulated in the diaphragm muscle of DMD and further investigations may lead to new therapeutic interventions for DMD.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have