Abstract

This study presents the characterization of the gas-particle partition and size distribution of seven parent polycyclic aromatic hydrocarbons (PAHs) in ambient air samples collected in the proximity of oil sands exploration and compares their time-integrated concentration levels with nineteen analogous oxidation products - quinones. Gas-phase (GP) and particle-phase (PM) ambient air aerosol samples that were collected separately in summer for either 24 h or 12 h (day and night) revealed a higher PAH partition in the GP than in the PM, with the distribution over tenfold higher for light over heavy PAHs. Diurnal/nocturnal samples demonstrated that night conditions lead to lower concentrations, linking some of the sources of these compounds with daytime activity emissions. PAHs were observed to transform more efficiently in the GP, and quinone levels increased in the PM with time. Correlation data indicated that parent PAHs originated from primary emission sources associated with oil sand activities and that quinone formation paralleled a reduction in PAH levels. The findings of this study shed new light on characterization of PAHs in the Athabasca oil sands region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.