Abstract
Cells of the cyanobacterium,Anacystis nidulans, were cultured in the presence of sublethal doses of the herbicides DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] and terbutryn (a triazine). The responses observed were characteristic of photosynthetic organisms grown under low light conditions. The contents of the accessory pigment phycocyanin increased in relation to chlorophyll. Moreover, each dose of herbicide was correlated with defined changes in the pigment profile. Data obtained from chlorophyll fluorescence measurements indicated that the additional phycocyanin was functionally integrated into phycobilisomes, probably into newly formed phycobilisomes. The concentration of fatty acids in the total polar lipid fraction (per milligram chlorophyll) was greater in adapted than in control cells; nevertheless, the ratio of unsaturated to saturated fatty acids remained unchanged. Measurable rates of photosynthetic electron transport were similar among herbicide-adapted cultures and controls. These data are consistent with the hypothesis that herbicide treatment impaired electron transport, but that function was restored by the adaptation response. Furthermore, this response is conserved among cyanobacteria and higher plants, indicating that this flexibility is extremely significant to photosynthetic function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.