Abstract

The gut of aquatic animals was a significant niche for dissemination of antibiotic resistance genes (ARGs) and direct response of living conditions. In this study, the gut microbiota of goldfish Carassius auratus Linnaeus was sampled at 7 days and 21 days after treatment with tetracycline at 0.285 and 2.85μgL-1 to investigate the influences on the microbial structure and antibiotic resistance. The proportion of tetracycline resistance bacteria was 1.02% in the control group, while increased to 23.00%, 38.43%, 62.05% in groups of high concentration for 7 days (H7), low concentration for 21 days (L21) and high concentration for 21 days (H21), respectively. Compared to the control group, the diversity of isolated Aeromonas spp. was decreased in the treatment groups and the minimal inhibitory concentration (MIC) of resistant isolates was enhanced from 32 to 256μgmL-1 with the treatment of tetracycline in time- and dose-dependent manners. Furthermore, the abundance of most genes was increased in treatment groups and efflux genes mainly responded to the stress of tetracycline with an average level of 1.0×10-2. After treatment with tetracycline, the predominant species were changed both at phylum and genus levels. The present study explored the impact of tetracycline on gut microbiota of goldfish at environmentally realistic concentrations for the first time and our findings will provide a reference for characterizing the microbiome of fish in the natural environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call