Abstract

BackgroundThe interconnectivities of built and natural environments can serve as conduits for the proliferation and dissemination of antibiotic resistance genes (ARGs). Several studies have compared the broad spectrum of ARGs (i.e., “resistomes”) in various environmental compartments, but there is a need to identify unique ARG occurrence patterns (i.e., “discriminatory ARGs”), characteristic of each environment. Such an approach will help to identify factors influencing ARG proliferation, facilitate development of relative comparisons of the ARGs distinguishing various environments, and help pave the way towards ranking environments based on their likelihood of contributing to the spread of clinically relevant antibiotic resistance. Here we formulate and demonstrate an approach using an extremely randomized tree (ERT) algorithm combined with a Bayesian optimization technique to capture ARG variability in environmental samples and identify the discriminatory ARGs. The potential of ERT for identifying discriminatory ARGs was first evaluated using in silico metagenomic datasets (simulated metagenomic Illumina sequencing data) with known variability. The application of ERT was then demonstrated through analyses using publicly available and in-house metagenomic datasets associated with (1) different aquatic habitats (e.g., river, wastewater influent, hospital effluent, and dairy farm effluent) to compare resistomes between distinct environments and (2) different river samples (i.e., Amazon, Kalamas, and Cam Rivers) to compare resistome characteristics of similar environments.ResultsThe approach was found to readily identify discriminatory ARGs in the in silico datasets. Also, it was not found to be biased towards ARGs with high relative abundance, which is a common limitation of feature projection methods, and instead only captured those ARGs that elicited significant profiles. Analyses of publicly available metagenomic datasets further demonstrated that the ERT approach can effectively differentiate real-world environmental samples and identify discriminatory ARGs based on pre-defined categorizing schemes.ConclusionsHere a new methodology was formulated to characterize and compare variances in ARG profiles between metagenomic data sets derived from similar/dissimilar environments. Specifically, identification of discriminatory ARGs among samples representing various environments can be identified based on factors of interest. The methodology could prove to be a particularly useful tool for ARG surveillance and the assessment of the effectiveness of strategies for mitigating the spread of antibiotic resistance. The python package is hosted in the Git repository: https://github.com/gaarangoa/ExtrARG

Highlights

  • The interconnectivities of built and natural environments can serve as conduits for the proliferation and dissemination of antibiotic resistance genes (ARGs)

  • While antibiotic resistance has likely existed since bacteria and their competitors first evolved, the development, mass production, and widespread use of antibiotics in humans and livestock is understood to have sped up evolution of antibiotic resistance, leading to new types, higher abundances, and enhanced horizontal transfer of antibiotic resistance genes (ARGs) among microbial populations

  • It was observed that extremely randomized tree (ERT) was correctly able to identify the discriminatory ARGs among the two labeled groups, i.e., “A” and “B,” including the ARGs which were manipulated with known variation among the groups

Read more

Summary

Introduction

The interconnectivities of built and natural environments can serve as conduits for the proliferation and dissemination of antibiotic resistance genes (ARGs). Several studies have compared the broad spectrum of ARGs (i.e., “resistomes”) in various environmental compartments, but there is a need to identify unique ARG occurrence patterns (i.e., “discriminatory ARGs”), characteristic of each environment Such an approach will help to identify factors influencing ARG proliferation, facilitate development of relative comparisons of the ARGs distinguishing various environments, and help pave the way towards ranking environments based on their likelihood of contributing to the spread of clinically relevant antibiotic resistance. Soil and other natural environments are known to contain a rich diversity of microorganisms and have been described as a reservoir and source of ARGs [9, 10] Under favorable conditions, these ARGs can be transferred to pathogenic bacteria via horizontal gene transfer, extending resistance to new bacteria [11]. Such processes are extremely difficult, if not impossible, to monitor in real time, and there is a need to develop tools to systematically and objectively assess how anthropogenic impacts, such as inputs of resistant bacteria, ARGs, and selective agents, collectively shape the “resistomes” (i.e., the full complement of ARGs in a system [12]) of affected environments

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.