Abstract

Germanium (Ge) is a promising substrate for semiconductor devices in the near future. However, wet-chemical preparations that enable the control of the structure of the Ge surface have not yet been developed. In this study, the surface structure of Ge(111) after HCl treatment is characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). XPS spectra revealed that purging with inert gas, such as nitrogen, is necessary to obtain a Ge surface free of oxide, probably because dissolved oxygen from air rapidly oxidizes the surface. Cl-terminated Ge surfaces are microscopically rough, but are composed of terraces and steps, as revealed by magnified STM images. Step edges run not along specific directions reflecting the crystallographic nature of the (111) surface but randomly. Many atomic-scale protrusions with the height of around 0.1 nm are dispersed on terraces. They are likely to be impurities such as carbon contaminants and water on Cl-terminated terraces attracted by Cl atoms with high electronegativity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call