Abstract

A series of surface-confined ionic liquid (SCIL) stationary phases for high-performance liquid chromatography were synthesized in-house. The synthesized phases were characterized by the linear solvation energy relationship (LSER) method to determine the effect of residual linking ligands and the role of the cation and the anion on retention. Statistical analysis was utilized to determine whether the system coefficients returned from multiple linear regression analysis of chromatographic retention data for a set of 28 neutral aromatic probe solutes were significantly different. Examination of the energetics of retention via kappa-kappa plots agrees with the results obtained from the LSER analysis. Residual linking ligands were determined to contribute reversed-phase-type retention character to the chromatographic system. Furthermore, retention on the SCIL phases was observed to be more profoundly affected by the identity of the anion than by that of the cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call