Abstract
Heparan sulfate is a linear glycosaminoglycan with considerable structural diversity that binds a myriad of growth factors and proteins that play pivotal roles in a variety of biological processes. We have investigated the structural complexity of partially degraded fragments of heparan sulfate in mucopolysaccharidosis type IIIA in which there is a defect in heparan sulfate catabolism. Mono- to hexadecasaccharides were isolated from the urine of a mucopolysaccharidosis IIIA patient and shown to have non-reducing end glucosamine N-sulfate residues, reflecting the catabolic deficiency in heparan N-sulfatase (sulfamidase) activity. The use of nitrous acid digestion (pH 1.5) combined with separation by reverse-phase high-performance liquid chromatography and analysis by electrospray ionization-mass spectrometry identified multiple forms of these oligosaccharides with some N-acetylated glucosamine residues and one to three sulfates per disaccharide. Furthermore, we demonstrated that each oligosaccharide existed in multiple sulfated forms. Many structural isomers were present, suggesting a complex mixture of oligosaccharides present in the urine as a consequence of a defect in heparan sulfate degradation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have