Abstract

MOS transistor mismatch is revisited in the context of subthreshold operation and VLSI systems. We report experimental measurements from large transistor arrays with device sizes typical for digital and analog VLSI systems (areas between 9 and 400μm2). These are fabricated at different production qualified facilities in 40-nm gate oxide,n-well andp-well, mask lithography processes. Within the small area of our test-strips (3 mm2), transistor mismatch can be classified into four categories: random variations, “edge,” “striation,” and “gradient” effects. The edge effect manifests itself as a dependence of the transistor current on its position with reference to the surrounding structures. Contrary to what was previously believed, edge effects extend beyond the outer most devices in the array. The striation effect exhibits itself as a position-dependent variation in transistor current following a sinusoidal oscillation in space of slowly varying frequency. The gradient effect is also a position-dependent spatial variation but of much lower frequency. When systematic effects are removed from the data, the random variations follow an inverse linear dependence on the square root of transistor area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.