Abstract
In this paper, we characterize simple smooth modules over some infinite-dimensional Z-graded Lie algebras. More precisely, we prove that if one specific positive root element of a Z-graded Lie algebra g locally finitely acts on a simple g-module V, then V is a smooth g-module. These infinite-dimensional Z-graded Lie algebras include the Virasoro algebra, affine-Virasoro algebras, the (twisted, mirror) Heisenberg-Virasoro algebras, the planar Galilean conformal algebra, and many others. This result for untwisted affine Kac-Moody algebras holds unless we change the condition from “locally finitely” to “locally nilpotently”. We also show that these are not the case for the Heisenberg algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.