Abstract

ABSTRACTIn this paper we report the properties of the anodic silicon dioxide film formed using light-induced anodisation (LIA) method and its potential to be used as surface passivation layer of p-type silicon surfaces of silicon solar cells. The high uniformity of the formed oxide is possibly due to the uniform drift of the positive charge carriers in the silicon to the surface being anodised. The oxide grows at higher rate than that in nitric acid, an oxide layer with thickness of 18 nm can be formed by anodising for 10 min with 15 V bias in 0.5 M sulphuric acid. After annealing in oxygen and then forming gas at 400 °C for 30 min, an average effective carrier lifetime of 120 μs was measured by quasi-steady state photoluminance on 180 μm p-type 3-5 Ohm cm Cz silicon wafers, with a value of 110 μs being measured for the same wafers passivated by a thermally-grown oxide of the same thickness. The properties of the anodic silicon dioxide layers formed by LIA have been characterized by ellipsometry, x-ray photoelectron spectroscopy, quasi-steady state photoluminance and Fourier transform infrared spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.