Abstract
ABSTRACTHigher silicon solar efficiencies are possible if metal contact is made to the cell though openings in a well-passivated surface. Patterning for rear point-contact schemes has typically been achieved using deterministic patterning methods involving either the use of photolithography, laser or inkjet patterning. However, with these approaches it is difficult to achieve cost-effective, high-throughput and robust processing if very small and closely-spaced openings are required. In this paper we review recent progress in the use of self-patterning anodised aluminium oxide layers to both passivate and enable point metal contacts to the rear surface of silicon solar cells. We describe a wet chemical method for anodising aluminium layers thermally-evaporated on the rear surfaces of silicon solar cells, and demonstrate that the layers can result in excellent passivation of the underlying silicon and also enable metal contact to the solar cell. Additionally, we describe how patterning of either the anodic aluminium oxide layer or the source aluminium layer can result in patterns of metallic and dielectric regions on a surface, and how currently-available solar cell electroplating tools can be adapted to achieve anodisation of solar cells at commercial processing throughput rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.