Abstract

Ultrathin silicon films were deposited on nanocrystalline diamonds by means of atomic layer deposition (ALD) from gaseous monosilane. The silicon deposition was achieved through the sequential reaction of SiH 4 saturated adsorption and in-site pyrogenation. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM) and Fourier transform infrared (FTIR) spectra were utilized to investigate the structure and the morphology of Si-coated nanocrystalline diamonds. The results confirmed that continuous silicon films were successfully deposited on both basal planes and edges of nanocrystalline diamond particles by this ALD method and the structure of the film was mainly determined by deposition temperature and deposition cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.