Abstract
The study of localized deformation in porous sandstones at the laboratory scale can yield valuable insights into the internal structures and mechanisms of shear zones and compaction bands that might impact on flow at a reservoir scale. Herein, we report results of a laboratory study of shear and compaction band formation in a porous sandstone using a range of full-field experimental techniques: acoustic emissions, ultrasonic tomography, X-ray tomography, and 3D volumetric digital image correlation, plus thin section and Scanning Electron Microscope observations. The two main mechanisms involved in shear and compaction band formation, grain breakage (damage) and porosity reduction (compaction), are both well captured by the combination of all these laboratory techniques. The combined use of these techniques demonstrated the processes of shear and compaction band generation and the associated strain components that developed in the laboratory, and potentially also increased understanding of the naturally developed equivalents. The physical mechanisms of shear and compaction involved seem to be similar, but at the laboratory scale they show differences in the proportions and the order of occurrence in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.