Abstract

Simple SummarySalmonella is a pathogenic bacterium able to infect both humans and animals. It is diffused worldwide and, generally, animals are a source of infection for humans. Among domestic animals, swine represents an important reservoir and a frequent source of human infection, especially in some countries like Italy. To acquire information on Salmonella, in particular about epidemiology, but also virulence, pathogenesis and antimicrobial resistance, is the basis for a cohesive control program. This manuscript describes an investigation conducted on Salmonella isolates from swine, where two important characteristics were evaluated: the pathogenicity and the antimicrobial resistance. A great variability was observed among investigated strains. Salmonella serovar Typhimurium was confirmed as one of the most virulent serovars; indeed, most isolates belonging to this serovar presented many of the searched virulence factors. A high level of antimicrobial resistance was observed for some compounds (sulfonamide, tetracycline, streptomycin and ampicillin), but not for the so-called “last line antibiotics”, such as, for example, ciprofloxacin. The constant monitoring on circulating strains in reservoir animals is important to acquire information and set up adequate prophylaxis measures.Salmonella is one of the most important zoonotic pathogens worldwide. Swine represent typical reservoirs of this bacterium and a frequent source of human infection. Some intrinsic traits make some serovars or strains more virulent than others. Twenty-nine Salmonella spp. isolated from pigs belonging to 16 different serovars were analyzed for gastric acid environment resistance, presence of virulence genes (mgtC, rhuM, pipB, sopB, spvRBC, gipA, sodCI, sopE), antimicrobial resistance and presence of antimicrobial resistance genes (blaTEM, blaPSE-1, aadA1, aadA2, aphA1-lab, strA-strB, tetA, tetB, tetC, tetG, sul1, sul2, sul3). A percentage of 44.83% of strains showed constitutive and inducible gastric acid resistance, whereas 37.93% of strains became resistant only after induction. The genes sopB, pipB and mgtC were the most often detected, with 79.31%, 48.28% and 37.93% of positive strains, respectively. Salmonella virulence plasmid genes were detected in a S. enterica sup. houtenae ser. 40:z4,z23:-strain. Fifteen different virulence profiles were identified: one isolate (ser. Typhimurium) was positive for 6 genes, and 6 isolates (3 ser. Typhimurium, 2 ser. Typhimurium monophasic variant and 1 ser. Choleraesuis) scored positive for 5 genes. None of the isolates resulted resistant to cefotaxime and ciprofloxacin, while all isolates were susceptible to ceftazidime, colistin and gentamycin. Many strains were resistant to sulfonamide (75.86%), tetracycline (51.72%), streptomycin (48.28%) and ampicillin (31.03%). Twenty different resisto-types were identified. Six strains (4 ser. Typhimurium, 1 ser. Derby and 1 ser. Typhimurium monophasic variant) showed the ASSuT profile. Most detected resistance genes sul2 (34.48%), tetA (27.58%) and strA-strB (27.58%). Great variability was observed in analyzed strains. S. ser. Typhimurium was confirmed as one of the most virulent serovars. This study underlines that swine could be a reservoir and source of pathogenic Salmonella strains.

Highlights

  • Salmonellosis represents one of the most important zoonosis worldwide, and in 2018 in Europe, Salmonella enterica sub enterica was the second most common zoonosis agent [1]

  • For Salmonella serovar Typhimurium, two distinct mechanisms to survive low pH were identified: a constitutive/intrinsic acid resistance and an inducible acid resistance, which is activated in acid-shocked cells at pH 4.5 [3]

  • The percentage of positive animals detected was in accordance with other works; in particular, the European Food Safety Authority (EFSA) report showed a prevalence in pigs of

Read more

Summary

Introduction

Salmonellosis represents one of the most important zoonosis worldwide, and in 2018 in Europe, Salmonella enterica sub enterica was the second most common zoonosis agent [1]. Many domestic animals could be reservoirs of salmonellae and, in particular, swine are the animals most often infected by this bacterium [2]. Salmonellae must exceed the stomach, where the gastric environment represents the first barrier encountered by enteric bacteria. Salmonellae possess the ability to survive the gastric acidity. For Salmonella serovar Typhimurium, two distinct mechanisms to survive low pH were identified: a constitutive/intrinsic acid resistance and an inducible acid resistance, which is activated in acid-shocked cells at pH 4.5 [3]. In appropriate conditions, salmonellae could colonize and invade gut epithelium [4].

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call