Abstract

A commercial 2D array seven29 detector has been characterized and its performance has been evaluated. 2D array ionization chamber equipped with 729 ionization chambers uniformly arranged in a 27 × 27 matrix with an active area of 27 × 27 cm2 was used for the study. An octagon-shaped phantom (Octavius Phantom) with a central cavity is used to insert the 2D ion chamber array. All measurements were done with a linear accelerator. The detector dose linearity, reproducibility, output factors, dose rate, source to surface distance (SSD), and directional dependency has been studied. The performance of the 2D array, when measuring clinical dose maps, was also investigated. For pretreatment quality assurance, 10 different RapidArc plans conforming to the clinical standards were selected. The 2D array demonstrates an excellent short-term output reproducibility. The long-term reproducibility was found to be within ±1% over a period of 5 months. Output factor measurements for the central chamber of the array showed no considerable deviation from ion chamber measurements. We found that the 2D array exhibits directional dependency for static fields. Measurement of beam profiles and wedge-modulated fields with the 2D array matched very well with the ion chamber measurements in the water phantom. The study shows that 2D array seven29 is a reliable and accurate dosimeter and a useful tool for quality assurance. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call