Abstract
To compare the dosimetric differences in volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) in stereotactic body radiation therapy (SBRT) of multiple lung lesions and determine a normal tissue complication probability (NTCP) model-based decision strategy that determines which treatment modality the patient will use. A total of 41 patients were retrospectively selected for this study. The number of patients with 1-6 lesions was 5, 16, 7, 6, 3, and 4, respectively. A prescription dose of 70 GyRBE in 10 fractions was given to each lesion. SBRT plans were generated using VMAT and IMPT. All the IMPT plans used robustness optimization with ± 3.5% range uncertainties and 5 mm setup uncertainties. Dosimetric metrics and the predicted NTCP value of radiation pneumonitis (RP), esophagitis, and pericarditis were analyzed to evaluate the potential clinical benefits between different planning groups. In addition, a threshold for the ratio of PTV to lungs (%) to determine whether a patient would benefit highly from IMPT was determined using receiver operating characteristic curves. All plans reached target coverage (V70GyRBE ≥ 95%). Compared with VMAT, IMPT resulted in a significantly lower dose of most thoracic normal tissues. For the 1-2, 3-4 and 5-6 lesion groups, the lung V5 was 29.90 ± 9.44%, 58.33 ± 13.35%, and 81.02 ± 5.91% for VMAT and 11.34 ± 3.11% (p < 0.001), 21.45 ± 3.80% (p < 0.001), and 32.48 ± 4.90% (p < 0.001) for IMPT, respectively. The lung V20 was 12.07 ± 4.94%, 25.57 ± 6.54%, and 43.99 ± 11.83% for VMAT and 6.76 ± 1.80% (p < 0.001), 13.14 ± 2.27% (p < 0.01), and 19.62 ± 3.48% (p < 0.01) for IMPT. The Dmean of the total lung was 7.65 ± 2.47 GyRBE, 14.78 ± 2.75 GyRBE, and 21.64 ± 4.07 GyRBE for VMAT and 3.69 ± 1.04 GyRBE (p < 0.001), 7.13 ± 1.41 GyRBE (p < 0.001), and 10.69 ± 1.81 GyRBE (p < 0.001) for IMPT. Additionally, in the VMAT group, the maximum NTCP value of radiation pneumonitis was 73.91%, whereas it was significantly lower in the IMPT group at 10.73%. The accuracy of our NTCP model-based decision model, which combines the number of lesions and PTV/Lungs (%), was 97.6%. The study demonstrated that the IMPT SBRT for multiple lung lesions had satisfactory dosimetry results, even when the number of lesions reached 6. The NTCP model-based decision strategy presented in our study could serve as an effective tool in clinical practice, aiding in the selection of the optimal treatment modality between VMAT and IMPT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.