Abstract

The aim of this study was to evaluate the influence of apramycin administration on the development of antibiotic resistance in Escherichia coli (E. coli) strains isolated from chicken feces and houseflies under field conditions. Chickens in the medicated group (n = 25,000) were given successive prophylactic doses (0.5 mg/l) of apramycin in their drinking water from Days 1 to 5, while no antibiotics were added to the un-medicated groups drinking water (n = 25,000). Over 40 days, a total of 1170 E. coli strains were isolated from fecal samples obtained from medicated and un-medicated chickens and houseflies from the same chicken farm. Apramycin MIC90 values for E. coli strains obtained from the medicated group increased 32–128 times from Days 2 to 6 (256–1024 μg/ml) when compared to those on Day 0 (8 μg/ml). Strains isolated from un-medicated chickens and houseflies had consistently low MIC90 values (8–16 μg/ml) during the first week, but showed a dramatic increase from Days 8 to 10 (128–1024 μg/ml). The apramycin resistance gene aac(3)-IV was detected in E. coli strains from medicated (n = 71), un-medicated (n = 32), and housefly groups (n = 42). All strains positive for aac(3)-IV were classified into 12 pulsed-field gel electrophoresis (PFGE) types. PFGE types A, E, and G were the predominant types in both the medicated and housefly groups, suggesting houseflies play an important role in spreading E. coli-resistant strains. Taken together, our study revealed that apramycin administration could facilitate the occurrence of apramycin-resistant E. coli and the apramycin resistance gene acc(3)-IV. In turn, these strains could be transmitted by houseflies, thus increasing the potential risk of spreading multi-drug-resistant E. coli to the public.

Highlights

  • MATERIALS AND METHODSAntimicrobial resistance emerges from the use of antimicrobials in animals and the subsequent transfer of resistance bacteria from those animals to the broader environment (Berendonk et al, 2015)

  • Two E. coli strains were selected from each sample

  • Prior to apramycin administration (Day 0), 90 E. coli strains were collected from the included samples, 450 E. coli strains were collected during apramycin administration (Days 1–5), and 630 E. coli strains were collected after apramycin administration

Read more

Summary

Introduction

Antimicrobial resistance emerges from the use of antimicrobials in animals and the subsequent transfer of resistance bacteria from those animals to the broader environment (Berendonk et al, 2015). Apramycin is an aminoglycoside antibiotic that has been used in animal husbandry since the early 1980s. It is still used in several European countries and it was approved for use in China in 1999 (Zhang et al, 2009). Epidemiological investigations of apramycin-resistant bacteria from food producing animals showed differential prevalence of apramycin resistance in different animals (Choi et al, 2011). One is the most prevalent apramycin resistance gene, aac(3)-IV, which codes for an aminoglycoside 3N-acetyltransferase type-IV enzyme (Davies and Oconnor, 1978). The other is npmA, which was identified in a clinical E. coli strain in 2007 and subsequently found to encode for a 16S rRNA m1A1408 methyltransferase (Wachino et al, 2007)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call