Abstract

The study of the flux-flow instability in superconducting materials has recently gained renewed attention due to its potential implications for the use of the analyzed materials as micrometer-sized superconducting detectors for single photons. The values of the quasiparticle relaxation time (τE) measured for these detectors are affected by pinning properties. Here, we report electric transport properties of NbReN microstrips of different quality. For the strip characterized by high resistivity, and large critical currents and pinning, we estimate a value of τE that is almost two orders of magnitude larger compared to that of another strip with a smaller value for the critical current, for which we measure τE∼12 ps. This low value is comparable to those reported in the literature for microstrips made of other highly-disordered superconductors. Our results suggest that NbReN microstrips have great potential for the realization of superconducting single-photon detectors, depending on further optimization of their fabrication process and the superconducting properties affected by it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.