Abstract

ZnO-WS2 is a potential high temperature solid film lubricant for aerospace applications that exhibits adaptive lubricant behavior. An adaptive lubricant undergoes phase and/or chemical changes in response to thermal, environmental, and tribological conditions; with the resulting phase or wear debris also being lubricious. Pulsed laser deposited (PLD) ZnO-WS2 thin films deposited at room temperature (RT) and wear-tested at room temperature have been shown to have coefficients of friction of 0.04 or less which are comparable to WS2 films, but have much longer wear lives. In the as-deposited state, PLD ZnO-WS2 films are amorphous, but when wear-tested, the phases WS2, WO3, and ZnWO4 are produced. Of these, WS2 is a lubricant phase at low temperatures (⪯ ~450°C) while ZnWO4 is a lubricant phase above about 600°C. The purpose of this work was to characterize the microstructural and chemical changes that occur when the RT-PLD ZnO-WS2 films are heated in air.The RT-PLD ZnO-WS2 films were deposited in a system having a base pressure of 9×l0-7 Pa with a typical pressure during deposition of 6×10-5 Pa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call