Abstract

Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future.

Highlights

  • Plant cytoskeleton plays a major role during cell events including division, expansion, morphogenesis and differentiation, and in response to external stimuli like pathogen attack [1]

  • Analysis of profilin sequence polymorphism RT-PCR amplification of total RNA with a set of degenerate primers resulted in 94 raw sequences from 24 olive cultivars, 10 from hazel, 8 from timothy-grass, 7 from maize and 2 identical sequences from birch

  • Each one of these sequences was individually analyzed by the nucleotide-nucleotide BLAST program and ScanProsite software searching for specific profilin motif patterns

Read more

Summary

Introduction

Plant cytoskeleton plays a major role during cell events including division, expansion, morphogenesis and differentiation, and in response to external stimuli like pathogen attack [1]. Plant cells respond to a wide range of internal or external stimuli by reorganizing their cytoplasm [3] These modifications often correlate with changes in the actin filament network, being the ABPs at the crossroad between extracellular signals and rearrangements of the cytoskeleton. One of the best characterized examples of ABPs in plants is profilin [4], a large multigene family (Pfam accession number PF00235) [5], differentially expressed, with biochemical and functionally diverse isoforms [6]. They have been found in lower eukaryotes [7], invertebrates [8], and vertebrates [9]. Viral profilins have been found, whose gene organization is homologous to mammalian profilins [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call