Abstract
This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Research of the National Institute of Standards and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.