Abstract

Novel eco-friendly adsorbents were prepared through pyrolysis and acid activation of raw almond leaf (RAL) to form almond leaf biochar (ALB) and chemically activated almond leaf biochar (CAL), respectively. The prepared adsorbents were characterized using TGA, FTIR, SEM–EDX, BET and XRD techniques and their physicochemical properties investigated. RAL, ALB and CAL were utilized for adsorption of BPB dye from aqueous solution using batch technique under optimum conditions. The optimum dye adsorbed by RAL, ALB and CAL were 92.83, 93.21 and 94.89%, respectively at pH 3, dye initial conc. (100 mg/L), adsorbent dose (0.04 g/25 mL), 60 min contact time and 301 K adsorption temperature. Although, Langmuir maximum monolayer adsorption capacities were found to be 365.36, 535.62 and 730.46 mg/g for RAL, ALB and CAL, respectively, but isotherm conformed to Freundlich model. Kinetic study confirmed suitability of pseudo-second-order model with rate constant 9.33 × 10–4, 9.91 × 10–4 and 12.60 × 10−4 g mg−1 min−1 for RAL, ALB and CAL, respectively. Negative values of thermodynamic parameters (∆G and ∆H) established sequestration process to be spontaneous and exothermic. RAL, ALB and CAL were discovered to be highly efficient adsorbents that could be used in place of expensive commercial adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.