Abstract
Abstract Copulas C C for which ( C t C ) 2 = C t C {({C}^{t}C)}^{2}={C}^{t}C are called pre-idempotent copulas, of which well-studied examples are idempotent copulas and complete dependence copulas. As such, we shall work mainly with the topology induced by the modified Sobolev norm, with respect to which the class ℛ {\mathcal{ {\mathcal R} }} of pre-idempotent copulas is closed and the class of factorizable copulas is a dense subset of ℛ {\mathcal{ {\mathcal R} }} . Identifying copulas with Markov operators on L 2 {L}^{2} , the one-to-one correspondence between pre-idempotent copulas and partial isometries is one of our main tools. In the same spirit as Darsow and Olsen’s work on idempotent copulas, we obtain an explicit characterization of pre-idempotent copulas, which is split into cases according to the atomicity of its associated σ \sigma -algebras, where the nonatomic case gives all factorizable copulas and the totally atomic case yields conjugates of ordinal sums of copies of the product copula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.