Abstract

Activated carbons are amorphous microporous graphitic materials formed (or activated) from a variety of organic precursers using high-temperature steam or acids. The possibility of modifying the activation process to create smaller or larger pores, from nanometers to microns in width, tailored to adsorb specific molecules or classes of molecule make activated carbons important industrial adsorbents. For the physical chemist they pose the challenge of understanding how gases adsorb in graphitic nanopores, that is, in restricted geometries, and of using that understanding to improve their characterization. One aim is to make predictions concerning the adsorption properties for a given material, i.e., a specific microstructure. In this paper we use molecular simulation methods, including Gibbs ensemble simulation, to determine new molecular models for nitrogen, methane, and carbon dioxide and grand canonical ensemble simulation (together with new experimental data for the adsorption of these gases on Vulcan ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.