Abstract

The availability of fertility markers is crucial for maintaining, protecting, and improving the genetics of Jawa-Brebes (Jabres) cows. Follicle-stimulating hormone receptor (FSHR) and insulin-like growth factor-1 (IGF-1) play critical roles in female reproductive physiology. The single-nucleotide polymorphisms (SNPs) FSHR G-278A and IGF-1 C-512T correlate with cows' fertility traits. This study aimed to identify these SNPs and their potential associations with fertility parameters in Jabres cows. Samples were collected from 45 heads of multiparous Jabres cows aged 3-10 years with body condition scores of 2.5-5.0 on a 5-point scale in Brebes Regency, Java, Indonesia. These cows were assigned to fertile (n = 16) and infertile groups (n = 29). Polymerase chain reaction (PCR) was carried out for DNA amplification of FSHR G-278A and IGF-1 C-512T fragments. Restriction fragment length polymorphism-PCR with the restriction enzymes FaqI for the product of FSHR G-278A and SnaBI for the product of IGF-1 C-512T was used to identify SNPs. The FaqI enzyme cut the 211 bp DNA fragment of FSHR G-278A in all samples into two bands of 128 bp and 83 bp (GG genotype). Meanwhile, the genotyping of amplicon products of IGF-1 C-512T generated a single 249 bp fragment (CC genotype) in both groups. The results showed that the FSHR G-278A/FaqI and IGF-1 C-512T/SnaBI loci were monomorphic in Jabres cows. Thus, neither FSHR G-278A/FaqI nor IGF-1 C-512T/SnaBI is a possible genetic marker for fertility in Jabres cows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.