Abstract

BackgroundPlant growth-promoting rhizobacteria (PGPR) are good alternatives for chemical fertilizers and pesticides, which cause severe environmental problems worldwide. Even though many studies focus on PGPR, most of them are limited in plant-microbe interaction studies and neglect the pathogens affecting ruminants that consume plants. In this study, we expand the view to the food chain of grass-ruminant-human. We aimed to find biocontrol strains that can antagonize grass pathogens and mammalian pathogens originated from grass, thus protecting this food chain. Furthermore, we deeply mined into bacterial genomes for novel biosynthetic gene clusters (BGCs) that can contribute to biocontrol.ResultsWe screened 90 bacterial strains from the rhizosphere of healthy Dutch perennial ryegrass and characterized seven strains (B. subtilis subsp. subtilis MG27, B. velezensis MG33 and MG43, B. pumilus MG52 and MG84, B. altitudinis MG75, and B. laterosporus MG64) that showed a stimulatory effect on grass growth and pathogen antagonism on both phytopathogens and mammalian pathogens. Genome-mining of the seven strains discovered abundant BGCs, with some known, but also several potential novel ones. Further analysis revealed potential intact and novel BGCs, including two NRPSs, four NRPS-PKS hybrids, and five bacteriocins.ConclusionAbundant potential novel BGCs were discovered in functional protective isolates, especially in B. pumilus, B. altitudinis and Brevibacillus strains, indicating their great potential for the production of novel secondary metabolites. Our report serves as a basis to further identify and characterize these compounds and study their antagonistic effects against plant and mammalian pathogens.

Highlights

  • Plant growth-promoting rhizobacteria (PGPR) are good alternatives for chemical fertilizers and pesticides, which cause severe environmental problems worldwide

  • nonribosomal peptides (NRPs) are synthesized in a nonribosomal pathway through nonribosomal peptide synthetases (NRPSs), which are huge enzymes constituted by different modules

  • Among the dominant genus of Bacillus, 37 and 30 strains belong to the B. subtilis and B. cereus groups, respectively, while the rest 16 strains form an independent group that consists of B. megaterium and B. simplex

Read more

Summary

Introduction

Plant growth-promoting rhizobacteria (PGPR) are good alternatives for chemical fertilizers and pesticides, which cause severe environmental problems worldwide. Bacillus is one of the most famous PGPR because of its endospore-forming capability, which confers them better survival in the environment [4], and abundant plant growth-promoting traits, including nitrogen fixation, phosphorus solubilization, induced systemic resistance (ISR) induction, and most importantly antimicrobial production [5, 6]. Antimicrobials produced by Bacillus and closely related species are very diverse [7]. Based on their biosynthesis pathway, these antimicrobials are classified into three main groups: nonribosomal peptides (NRPs), polyketides (PKs), and bacteriocins. Contrary to NRPs and PKs, bacteriocins are a class of antimicrobials synthesized in a ribosomal pathway. Bacillus-originated bacteriocins such as subtilosin A, plantozolicin, and subtilomycin are well studied [14,15,16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call