Abstract

Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call