Abstract

Bepotastine (BPT) is a H1-receptor antagonist. It is used as a besilate salt in ophthalmic solution for allergic conjunctivitis and orally for the treatment of allergic rhinitis and urticaria/pruritus. Its systematic forced degradation study is unreported. The same was carried out in different conditions prescribed by International Conference on Harmonisation. The stressed solutions were subjected to reversed phase liquid chromatographic analysis, and BPT was observed to be labile under photobasic condition only, yielding 5 photodegradation products. The structures of the latter were elucidated from data generated by liquid chromatography–high-resolution mass spectrometry and multistage mass spectrometry. Of the 5, 4 products were further isolated and subjected to nuclear magnetic resonance spectroscopy to justify the proposed structures. Two of them, with similar accurate mass, were additionally and unambiguously characterized from their heteronuclear multiple bond correlation data, hydrogen deuterium exchange mass data, and quantum chemical analysis using density functional theory calculations. One degradation product had a structure that could only be explained by unusual rearrangement involving conversions of N-oxide into hydroxylamine, similar to Meisenheimer rearrangement. The physicochemical, as well as absorption, distribution, metabolism, excretion, and toxicity properties of BPT and its characterized photodegradation products were evaluated in silico by ADMET Predictor™ software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.