Abstract

In the present, a novel cost-effective process scheme for single step selective emitter diffusion was implemented. It is based on the fabrication of acid-resist pattern using a stamping technique with collaboration of a spin on dopant (SOD) and chemical etched-back emitter methods. The SOD diffusion process provided heavily doping n-emitter. Acid-resist pattern without exploitation of a complex method as a photolithography, was stamped as a metal contact pattern for prevention of a localized heavy-dope region from etching back. Phosphorus doping profiles were controlled by etching back time to provide the formation of n-type selective emitter. Sheet resistance is tunable from 10 to 180 Ohm/Sq on localized n-layer. After removal of the patterned acid-resist, the selective n-emitter solar cell structure was obtained under one-step diffusion to achieve a better blue-light response and low contact resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call