Abstract

Particulate matter (PM) emissions from a common-rail automotive diesel engine were characterized as a function of the engine operating regime in terms of mass, particulate number, size distributions, and composition (soot and volatile fraction), as well as by means of the optical measurements currently used for engine calibration. Exhaust gas samples were taken both upstream and downstream of the diesel oxidation catalyst (DOC), so to evaluate its effect on PM modification. Moreover, the effects of the engine calibration were also investigated at two different exhaust gas recirculation (EGR) rates. Fundamental information on the PM characteristics, which is essential for the knowledge-based design of a new generation of diesel particulate filters (DPFs), was gathered. The loading of a DPF entails the need of trap regeneration by particulate combustion, whose efficiency and frequency are somehow affected by the way soot is deposited along the channels. Small lab-scale 300 cpsi DPF samples were loaded downstream the DOC in an ad hoc designed reactor capable of hosting five samples with part of the entire flow produced by an automotive diesel engine at the 2000 × 5 μ B EP operating condition. Soot layer thickness was estimated by means ofFESEM observations after sample sectioning at progressive locations, obtained through a procedure defined not to affect the distribution of the soot inside the filter and to enable estimation of the actual soot thickness along the channel length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.