Abstract

Geoelectric data obtained from forty (40) vertical electrical soundings collected with a Schlumberger device in the Adamawa plateau region, also known as the Cameroon water tower, have been treated by the least-squares inversion method. In order to study the nature and thickness of the aquifer and the necessary geoelectric parameters, quantitative and qualitative interpretations of the data were made. The results obtained showed that: about four to five geoelectric layers have been delimited in the study area with a dominance of the KH curve, which can be used as a reference for future studies. The first two layers constitute an association of clay and laterite with resistivity values ranging from 58 to 9122 Ω&middotm and whose thickness is between 0.6 and 13.4 m. The third layer is a potentially aquiferous laterite composed of clay, laterite and especially clay sand and cracked/good granite, with a dominance of sandy alteration whose resistivity values are between 81 and 960 Ω&middotm and its thickness between 12.2 and 26.8 m. The fourth and fifth layers are made up of cracked/good granite with a resistivity ranging from 12-10705 Ω&middotm with an average value of 1817 Ω&middotm. This study also shows that the North-East, South-West and South sectors could be the groundwater convergence zones and that the average depth of the basement aquifer roof is about 28.3 m. The geoelectric sections of certain demarcated vertical electrical sounding stations are consistent with the geologic description of the area.

Highlights

  • This study shows that the North-East, South-West and South sectors could be the groundwater convergence zones and that the average depth of the basement aquifer roof is about 28.3 m

  • Forty (40) vertical electrical soundings were exploited by the least-squares inversion method to characterize the aquifers in the Adamawa Plateau region of Cameroon

  • This study shows that: 1) the geological layers identified in this zone are made up of: top soil, laterite, clay, clay sand and granite whose resistivities have been determined; 2) Several types of curves have been identified: AA, AK, HA, KH, KQ, QH and QQ for the four (04) layer models and HKH, KHA and KQH

Read more

Summary

Introduction

The population growth has led to a serious shortage of drinking water, which is why the drinking water points must be exploited with the greatest care in order to avoid their exhaustion and their sustainable use. This poses a great challenge for citizens and the government [1], who has to deal with the inadequate supply of drinking water in the region, which has become a chronic problem. This work, which is an application of the geoelectric prospecting method, attempts to provide a solution to the above-mentioned problem with the aim of producing a database that could be used for detailed groundwater exploration activities in the study area

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.