Abstract
In this paper, we report on investigations related to the performance characteristics of two different types of etched chemically (n-octadecyl- and cholesterol-) modified capillaries in the open tubular format of capillary electrochromatography (CEC) for the analysis of synthetic peptides. The results confirm that the nature of the surface chemistry used to modify the capillary wall and type of chemically bonded group employed can affect the selectivity as well as the resolution of peptide samples. The results are consistent with the participation of selective peptide interactions with the bonded phase, although other factors, such as the morphology of the capillary wall surfaces, appear to be also involved. Moreover, several surprising observations related to peptide-specific multi-zoning effects have been observed. Additional experimental variables that can also be utilized to affect the retention of peptides in this approach to OTCEC include the type and percentage of organic solvent modifier employed in the eluent and the pH of the buffer system. To evaluate the reproducibility of different batches of the n-octadecyl- and cholesterol-modified capillaries and the stability of the chemically modified surface, the OTCEC selectivity and peak shape behavior of two small basic molecules (serotonin and tryptamine) and two proteins (turkey and chicken lysozyme) were also investigated. Finally, the use of the "bubble" cell technology for creating the detector window has been shown to provide significantly higher detection sensitivity with peptides, as compared with the conventional capillary format.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have