Abstract

Oil-in-water emulsion gels consisting sunflower oil as the internal phase and a chemically-crosslinked gelatin solution as the continuous aqueous phase were developed. The dispersion was homogenized at 60°C in a high pressure valve homogenizer at a pressure of 5000/500psi for different time periods (2, 5 or 10 min). The homogenized samples were formed into films at 5oC followed by crosslinking with genipin at room temperature. The microstructure of the gels was studied using confocal laser scanning microscopy. The results showed significant differences in the microstructure depending on homogenization time. Gel micrographs indicated a well-dispersed network of sunflower oil droplets in the gelatin matrix with a higher homogenization duration (10 min) while a less unorganized gel microstructure was evident at shorter homogenization times (2 and 5 min). Gels were also characterized using colourimetric analysis. Puncture tests of the gels were tested to establish their mechanical stability. The gels prepared with 10 min homogenization exhibited the highest puncture strength (0.23±0.20 MPa) (p<0.05). These results demonstrated that gelatin gels homogenized for longer periods were more stable, thus expanding their range of possible biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.