Abstract

We have characterized an emulsion system stabilized by an amphiphilic random copolymer, methoxy polyethylene glycol-23 methacrylate/glyceryl diisostearate methacrylate copolymer (MPM-GDM). The combined results of the static surface tension and transmission electron microscopy with freeze-fracture technique (FF-TEM) suggested that this copolymer forms aggregates in aqueous solutions. The membrane emulsification method produced an oil-in-water (O/W) emulsion in the mixture of squalane, water, and MPM-GDM, where the squalane concentration was set at 10 - 60 wt% and the MPM-GDM concentration was either 1 or 5 wt%. The prepared emulsion was stable against coalescence due to the formation of an adsorption layer of MPM-GDM. Based on the FF-TEM results, it is confirmed that a relatively large island-like structure is formed on the emulsion droplet surface. Furthermore, MPM-GDM can act as a thickening agent of the continuous liquid phase, which enhances the stability against creaming. The cooperative two effects improve the stability of the emulsion system without adding co-stabilizer such as low molecularweight surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call