Abstract

Antimicrobial and hemolytic activities of amphiphilic random copolymers were modulated by the structure of the cationic side chain spacer arms, including 2-aminoethylene, 4-aminobutylene, and 6-aminohexylene groups. Cationic amphiphilic random copolymers with ethyl methacrylate (EMA) comonomer were prepared with a range of comonomer fractions, and the library of copolymers was screened for antimicrobial and hemolytic activities. Copolymers with 4-aminobutylene cationic side chains showed an order of magnitude enhancement in their antimicrobial activity relative to those with 2-aminoethylene spacer arms, without causing adverse hemolysis. When the spacer arms were further elongated to hexylene, the copolymers displayed potent antimicrobial and hemolytic activities. The 4-aminobutylene side chain appears to be the optimal spacer arm length for maximal antimicrobial potency and minimal hemolysis, when combined with hydrophobic ethylmethacrylate in a roughly 70/30 ratio. The copolymers displayed relatively rapid bactericidal kinetics and broad-spectrum activity against a panel of Gram-positive and Gram-negative bacteria. The effect of the spacer arms on the polymer conformation in the membrane-bound state was investigated by molecular dynamics simulations. The polymer backbones adopt an extended chain conformation, parallel to the membrane surface. A facially amphiphilic conformation at the membrane surface was observed, with the primary ammonium groups localized at the lipid phoshophate region and the nonpolar side chains of EMA comonomers buried in the hydrophobic membrane environment. This study demonstrates that the antimicrobial activity and molecular conformation of amphiphilic methacrylate random copolymers can be modulated by adjustment of cationic side chain spacer arms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call