Abstract

We present a simple way to fabricate high-entropy (La0.2Nd0.2Sm0.2Dy0.2Yb0.2)2Zr2O7 (HE-RE2Zr2O7) ceramic nanofibers using the electrospinning and annealing processing in this work. The microstructure of nanofibers was characterized by thermal gravity-differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the diameter and grain growth of HE-RE2Zr2O7 nanofibers under 1000 °C was analyzed. Results indicate that HE-RE2Zr2O7 nanofibers can be prepared at temperatures above 400 °C and the crystallite size can be controlled by annealing temperature. Both diameter and the grain growth of HE-RE2Zr2O7 nanofibers are lower than that of La2Zr2O7 nanofibers, attributed to the sluggish diffusion effect. The advantages of HE-RE2Zr2O7 nanofibers can further enlarge the application of nanofibers in the aspect of high-temperature thermal insulation materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.