Abstract

Over the past several decades, the fabrication of novel ceramic nanofibers applicable in different areas has been a frequent focus of scientists around the world. Aiming to introduce novel ceramic core-shell nanofibers as a magnetic solid acid catalyst, Fe2O3@SiO2–SO3H magnetic nanofibers were prepared in this study using a modification of Fe2O3@SiO2 core-shell nanofibers with chlorosulfonic acid to increase the acidic properties of these ceramic nanofibers. The products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscope (EDS), vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The prepared nanofibers were used as catalysts in formamide and formamidine synthesis. The treatment of aqueous formic acid using diverse amines with a catalytic amount of Fe2O3@SiO2–SO3H nanofibers as a reusable, magnetic and heterogeneous catalyst produced high yields of corresponding formamides at room temperature. Likewise, the reaction of diverse amines with triethyl orthoformate led to the synthesis of formamidine derivatives in excellent yields using this novel catalyst. The catalytic system was able to be recovered and reused at least five times without any catalytic activity loss. Thus, novel core-shell nanofibers can act as efficient solid acid catalysts in different organic reactions capable of being reused several times due to their easy separation by applying magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.