Abstract

Fast atom beam (FAB) sources using dc cold cathode discharge, comprising parallel plate electrodes and thick carbon plate cathodes with multiple beam extracting apertures, were developed to generate parallel and straight energetic neutral beams for precise etching of three-dimensional microstructures consisting of insulating materials. Conventional FAB sources and their applications are briefly reviewed, and the advantages of newly developed FAB sources and new applications are introduced. By using SF6 gas, a precise etching of quartz glass with an etch rate of 30 nm min−1, a uniformity of within 4% (P–V) in Ø76 mm, vertical etch profile, smooth etch surface and long-term etch rate stability over 250 min were realized. The neutralization coefficient and the beam current density were also measured using a secondary electron method and a pulse-counting method, making it possible to measure the neutralization coefficient without referring to databases for secondary electron yields. A neutralization coefficient of 98% was obtained at maximum, although, under practical etching conditions, the neutralization coefficient is less than 70%. By comparing the results of the simple model calculation with the experimental data, it was determined that the neutralization mechanism was dominated by charge transfer. The importance of neutralization in a process chamber is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call