Abstract

AbstractPreparation of E‐glass/waterborne epoxy prepregs containing natural nanoclay and properties of their composites are presented. Prepregs were prepared by wetting randomly oriented, chopped glass fiber preforms with aqueous dispersion of EpiRez 3522‐W‐60 resin, dicyandiamide, 2‐methylimidazole and natural nanoclay (Cloisite® Na+). The nanoclay content of the aqueous dispersion was adjusted to yield final nanoclay contents of 0, 1, 2, and 4 wt%, whereas the glass fiber content is kept constant at 47 wt%. These prepregs were then used to fabricate disk‐shaped composite samples by APA2000 rheometer. Composite samples were tested for interlaminar shear strength, flexural stiffness, and glass transition temperature. The flexural stiffness was observed to increase by more than 26% over the range of nanoclay loading, despite a 13% decrease in interlaminar shear strength. Similarly, glass transition temperature increased from 89°C to above 94°C for the samples comprising 4 wt% nanoclay. X‐ray diffraction analyses indicated 48% increase in the gallery spacing suggesting strong intercalation of the nanoclay platelets by the epoxy matrix. Microstructural observations of the fracture surfaces and polished surfaces show significant differences in the matrix topology and fiber to matrix adhesion. The composites with higher nanoclay content depict uniform and submicron surface features implying homogenous dispersion of nanoclay. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.