Abstract
Statement of problemSoft liners are essential for denture wearers, which aids in the healing of soft tissue injuries caused by rough denture base surfaces. Silicone soft liners, while effective, can accumulate biofilm over time, necessitating enhancement. PurposeThis in vitro study aimed to assess the efficacy of silicone soft liners incorporating varying concentrations of cerium oxide nanoparticles. Materials and methodsA stainless-steel die as per ISO standard 10139-2-2018 (35 × 6 mm), Using G*Power 3.0.10 software, 400 samples were prepared with 95 % confidence interval and 80 % power. Samples were divided into five groups: surface morphology (Group A), surface hardness (Group B), wettability (Group C), cytotoxicity (Group D), and antifungal property (Group E). Each group was subdivided based on cerium oxide nanoparticle concentrations. Samples were stored in artificial saliva until evaluation. Surface morphology was examined via scanning electron microscopy (SEM), surface hardness using Shore A Durometer, wettability by drop shape analysis, cytotoxicity via MTT assay, and antifungal properties using crystal violet staining.Data were assessed for normal distribution using Kolmogorov-Smirnov and Shapiro-Wilk tests. ResultsSEM analysis showed optimal nanoparticle dispersion in Group A2(0.25 %) and A3 (0.5 %). Group B2 (0.25 %) exhibited the lowest mean surface hardness, decreasing from day 1 to day 30. Group C3 demonstrated the most hydrophobic surface across days. Group D2 exhibited the least cytotoxicity at all time intervals. Group E4 displayed the highest antifungal activity. ConclusionWithin study limitations, silicone soft liners modified with 0.25 % and 0.5 % cerium oxide nanoparticles exhibited superior properties in surface hardness and cytotoxicity. Optimal surface morphology and wettability were observed with 0.5 % concentration, while antifungal efficacy peaked at 1 %. These findings suggest clinical potential for treating damaged oral tissues. Clinical implicationsSoft liners modified with 0.25 % and 0.5 % cerium oxide nanoparticles may benefit patients with oral tissue abuse, offering enhanced therapeutic properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.