Abstract
Plasma-enhanced chemical vapor deposition, reactive magnetron sputtering, hot-wire chemical vapor deposition and radio frequency plasma-enhanced chemical vapor deposition were used to develop technology for preparation of nano-bio silicon carbide coating of ceramic materials for dental applications. The effect of the bias voltage applied to the ceramic prostheses and dental crowns on the crystallization processes have been recognized. The optimal bias voltage applied to conductive substrate was –200 V, whereas for dielectric substrate the bias voltage Vbias did not affect the properties of SiC coating. The analysis of CVCs and spectroscopic diagnostics as the methods for studying the mechanism of interfacial rearrangements to investigate SiC phase transition in nano silicon carbide coatings were used. The conductivity of the SiC coating coincided with the conductivity on the dielectric (µn0 = 1012…1013 сm–1·s–1·V–1). The conductive substrate had a significant effect on the properties of the coating and thus depended on the bias voltage Vbias. The conductivity increased by three-four orders of magnitude (µn0 = 3·1017 сm–1·s–1·V–1), if the bias voltage Vbias = –200 V. The increase of the bias voltage (Vbias = –600 V) led to a decrease in the conductivity (µn0 = 1011…1012 сm–1·s–1·V–1). It was found that there was the double injection regime with bimolecular recombination in this structure with the dependence I = V3/2 for CVCs of SiC. The luminescence spectrum of SiC coating on non-dielectric ceramics (if Vbias = – 200 V during deposition) was significantly different from the luminescence spectrum of SiC coating on dielectric ceramics. Increasing the applied voltage to the substrate Vbias during deposition led to increasing the fraction of hexagonal polytypes. Directions in the crystal lattice according to the photoluminescence spectra were identified from the comparing the values of the width of the non-phonon parts of stacking faults and deep level spectra in the low-temperature photoluminescence with arrangements of atoms in the SiC lattice structure. The displacement of each atom participating in photoluminescence allowed to find the correlation with technology of SiC deposition and to develop technology of SiC coating on the dental materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Semiconductor Physics, Quantum Electronics and Optoelectronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.