Abstract

BackgroundTuberculosis, caused by Mycobacterium tuberculosis (MTB), is the most notified disease in the world. Development of resistance to first line drugs by MTB is a public health concern. As a result, there is the search for new and novel sources of antimycobacterial drugs for example from medicinal plants. In this study we determined the in vitro antimycobacterial activity of n-Hexane sub-fraction from Bridelia micrantha (Berth) against MTB H37Ra and a clinical isolate resistant to all five first-line antituberculosis drugs.MethodsThe antimycobacterial activity of the n-Hexane sub-fraction of ethyl acetate fractions from acetone extracts of B. micrantha barks was evaluated using the resazurin microplate assay against two MTB isolates. Bioassay-guided fractionation of the ethyl acetate fraction was performed using 100% n-Hexane and Chloroform/Methanol (99:1) as solvents in order of increasing polarity by column chromatography and Resazurin microtiter plate assay for susceptibility tests.ResultsThe n-Hexane fraction showed 20% inhibition of MTB H37Ra and almost 35% inhibition of an MTB isolate resistant to all first-line drugs at 10 μg/mL. GC/MS analysis of the fraction resulted in the identification of twenty-four constituents representing 60.5% of the fraction. Some of the 24 compounds detected included Benzene, 1.3-bis (3-phenoxyphenoxy (13.51%), 2-pinen-4-one (10.03%), N(b)-benzyl-14-(carboxymethyl) (6.35%) and the least detected compound was linalool (0.2%).ConclusionsThe results show that the n-Hexane fraction of B. micrantha has antimycobacterial activity.

Highlights

  • Tuberculosis, caused by Mycobacterium tuberculosis (MTB), is the most notified disease in the world

  • Healthcare burden resulting from an estimated 13.3 million prevalent cases of tuberculosis (TB) and 2.32 million deaths [1] has been made worse by the emergence of multidrug-resistant TB (MDR-TB)

  • In a preliminary screening of selected South African plants for antimycobacterial activity, we observed that the acetone extract of B. micrantha barks showed potent growth inhibition of MTB with a MIC of 25 μg/mL [4]

Read more

Summary

Introduction

Tuberculosis, caused by Mycobacterium tuberculosis (MTB), is the most notified disease in the world. There is the search for new and novel sources of antimycobacterial drugs for example from medicinal plants. In this study we determined the in vitro antimycobacterial activity of n-Hexane sub-fraction from Bridelia micrantha (Berth) against MTB H37Ra and a clinical isolate resistant to all five first-line antituberculosis drugs. 10% of the world’s terrestrial plants, some being used medicinally, are found in South Africa. Few of these plants have been investigated for anti-TB activity, yet TB is one of South Africa’s biggest healthcare problems. In a preliminary screening of selected South African plants for antimycobacterial activity, we observed that the acetone extract of B. micrantha barks showed potent growth inhibition of MTB with a MIC of 25 μg/mL [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.