Abstract

A multipoint diffraction strain and tilt sensor using a multichannel imaging position-sensitive detector has been developed and characterized, with the novel feature of simultaneous measurement of strain and tilt at a large array of points. Unlike conventional interferometry based systems, this new whole-field measurement system uses principles of diffraction to directly measure strain at the desired points. The system utilizes a moiré interferometer for the generation of two coherent and symmetric beams, which illuminate a high-frequency diffraction grating, bonded on the surface of the sample under test. The core of the system is a charge coupled device camera fitted with an array of microlenses, which samples the diffracted beam into an array of beamlets. The camera with lens array, which is being used as array-type multichannel position-sensitive detectors, senses the shift of the individual microspots. The deviation is then processed and the normal and shear strains are calculated at that spot along with rigid-body tilt. The combined results are graphically shown to the user as two-dimensional strain and tilt maps. Simultaneous strain measurement at more than 1300 points has been successfully obtained with the spatial resolution of better than 150μm. This novel technique has many useful features compared to other whole-field optical strain measurement techniques and is expected to be very valuable in experimental mechanics of microsystems and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.