Abstract

Mouse tissues contain unusual basic isoelectric forms of alpha-L-fucosidase (with approximate isoelectric points of 8.3 and 9.0) in addition to the usual acidic and neutral forms previously described in tissues of other species. These unusual forms are very prominent in placenta and foetal tissues and comprise approx, 50-80% of total activity up to 11 days of postnatal development. By 15 days of postnatal development, the basic forms are diminished in amount and comprise not more than 25% of total activity. Neuraminidase treatment of adult mouse liver alpha-L-fucosidase led to significantly decreased amounts of acidic forms and increased amounts of the basic forms, suggesting that these forms are chemically related at least in part by sialic acid residues. Comparative kinetic studies on mouse liver, human liver and mouse placental alpha-L-fucosidases indicated that they have the same Km (0.05-0.06 mM) for 4-methylumbelliferyl alpha-L-fucopyranoside but different pH optima and thermostability properties. Mouse liver alpha-L-fucosidase has one pH optimum (5.5) and an acidic shoulder (centred around pH 4.0) compared with two distinct optima (4.3 and 6.8) for the human liver enzyme. Mouse placental alpha-L-fucosidase has a pH-activity curve comparable with that of the mouse liver enzyme except that the acidic shoulder is absent. Mouse liver alpha-L-fucosidase is considerably more thermolabile after preincubation at 50 degrees C than are the human liver and mouse placental enzymes, which gave similar thermodenaturation curves. Immunochemical studies indicated that mouse and human alpha-L-fucosidases are dissimilar antigenically but exhibit some cross-reactivity. The IgG fraction of antibody prepared in goat against human liver alpha-L-fucosidase was ineffective by itself in immunoprecipitating mouse liver alpha-L-fucosidase, but 63% and 72% of the mouse liver and placental enzymes respectively could be immunoprecipitated in the double-antibody experiments under conditions that immunoprecipitated 92% of the human liver enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call