Abstract
The classic microseepage model supports the notion that hydrocarbon pools leak to the surface over time and trigger an array of diagenetic physicochemical and mineralogical changes in the overlying sediments. Mapping the induced alteration mineralogy for microseepage targeting has been an appealing yet ambiguous practice, mostly because of our incomplete understanding of the diversity of changes occurring in the environment. To close this gap, an integrated spectroscopic approach is adopted here to investigate the variability, quantity, and physicochemistry of diagenetic minerals induced by active microseepage systems over the Alborz oil reservoir in the Qom region, Iran. The area includes an effectively sealed carbonate reservoir overlain by thick Oligocene sediments of the Upper Red Formation. A large suite of samples collected from microseepage-affected zones was spectrally characterized in the 350–2500 nm wavelength region and then statistically contrasted against unaffected samples gathered from a nearby control area. The analysis reveals a novel array of mineralogic indicators for microseepage systems. It indicates that smectites (montmorillonite, nontronite), Al-rich mixed-layer illite/smectite, Fe-rich chlorite and traces of palygorskite constitute the clay alterations. This array is associated with the enrichment of K 2 O and loss of Na 2 O and MgO from the system, as indicated by X-ray fluorescence measurements. In the arid climate of the region, the iron-rich red-beds (Fe 2 O 3 > 6%) are only moderately bleached and, thus, the subsequent chemical weathering of the relict irons has triggered goethite (Al-poor), and likely ferrihydrite and maghemite precipitation. Consequently, besides the typical ferric iron bleaching, the modification in the mineralogy of iron oxides/oxyhydroxides (marked by a shift in the absorption minimum at ~ 900 nm) is suggested as an additional indicator of microseepage systems. Fe-chlorites constitute the dominant ferrous mineral present in the environment. The affected strata are also associated with prevalent calcite and gypsum cements, and occasionally jarosite occurrences. Based on the silica contents of the host-rock, the microseepage-induced alterations are classified into two categories, namely ‘felsic’ and ‘mafic’, wherein the latter is typified by the assemblages described here. This study provides new insights into microseepage-induced alterations and highlights the significance of reflectance spectroscopic techniques in facies determination and the alteration footprints mapping of onshore microseepage systems. • Novel mineralogical indicators for microseepage-induced alterations are introduced. • The illite/smectite composition tends to be Al-rich with high crystallinity degree. • The chlorite composition becomes progressively more Fe-rich in the affected zones. • The host-rock geochemistry and weathering overprint affect the diagenetic alterations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have